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Abstract-Transmembrane proteins play vital roles in living cells. 
The difficulties in determining the topology of transmembrane 
protein experimentally and the increasing amino acid sequence 
data from genome projects provide great demand for 
computational methods to predict the region of transmembrane 
segments in protein sequences. A hydrophobicity based 
supervised learning vector quantiztion neural network 
prediction method is presented. The prediction accuracy is 
above 90% and comparable to existing methods.  
Keywords- learning vector quantization (LVQ), 

 hydrophobicity, transmembrane(TM)  
 

I. INTRODUCTION 

 

Transmembrane proteins are integral membrane proteins 
that span the phospholipid bilayer completely. There are two 
basic ways these proteins can transverse the membrane, as 
one or more α-helix or as aβsheet barrel. Because their 
functions vary from ion channel to receptor and factor, 
transmembrane proteins play significant and functionally 
distinct roles in living cells. The number of the protein 
sequences in the Protein Information Resource (PIR)[1] and 
SWISS-PROT [2] database has increased exponentially as a 
result of genome projects. It is estimated that 20-30% of all 
genes in most genomes encode membrane proteins [3]. 
However, due to the difficulties in purification and 
crystallization of these proteins and limitation of other 
method such as nuclear magnetic resonance (NMR), only a 
handful membrane proteins whose topologies have been 
verified by experimental methods are available [4]. Hence, 
there’s a great demand for computational methods to predict 
the secondary structure of transmembrane protein. 

There are several methods developed to predict 
transmembrane segments in membrane proteins. The earliest 
method is based on hydrophobicity analysis by Ktye and 
Doolittle [5] and later by Engelman [6]. The accuracy was 
improved by considering different charge distribution 
between the inside and outside loops [7]. As the experimental 

data increased, statistical approach on the amino acid 
distribution in various structural parts of membrane protein 
came into being [8]. By combining multiple sequence 
alignment, neural network based algorithm drawing 
information from aligned protein sequences reached a high 
accuracy above 90% [9][10]. Recently two methods using 
hidden markov model (HMM) also give good results [11][12]. 
Although hydropathy plot is still widely used, one main 
problem is to determine the value of cutoff on the hydropathy 
plot. Here we use a supervised learning vector quantization 
(LVQ) neural network to automatically determine the helical 
transmembrane region based on hydrophobicity of amino acid 
sequence. 

 
II METHODOLOGY 

 

A. Datasets 
 
We use the latest version (released by 2001-01-29) of MPtopo 
database [4]. Although there are more than 1000 records of 
membrane protein in SWISS-PROT, most of their topology 
have not been verified by experimental means [13]. The 
reliability of transmembrane sequence assignment for those 
membrane proteins is insecure. MPtopo is a database of 
membrane proteins whose topologies have been verified 
experimentally by means of crystallography, gene fusion, and 
other methods [4]. The MPtopo database contains 547 
transmembrane segments belonging to 92 proteins that were 
divided into 3 catalogs: 3D_helix, 1D_helix and 3D_other [4]. 
The length distributions of transmembrane segments in these 
proteins are shown in Fig.1. There are apparent differences 
among the distributions of three catalogs. The average length 
of transmembrane segments in 3D_helix is greater than that 
of 1D_helix and 3D_other. To avoid the bias in choosing the 
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data, we select half of the proteins in all 3 catalogs as training 
set for neural network, and divide the rest of the data equally 
into two set: validation set to evaluate the training result and 
test set to test the performance of the trained neural network. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

B. Learning Vector Quantization 
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Learning vector quantization (LVQ) by Kohonen[14] is a 
supervised algorithm for training vector quantization (VQ) 
classifiers that in practice nearly always rapidly converge to a 
“good” solution. It generates a table of vector templates 
known as codebook vectors or reference vectors (RVs). Each 
codebook vector is associated with a class. During 
classification, the Euclidean distances between the input 
vector and all of the codebook vectors are computed. The 
input vector is assigned to the class corresponding to the 
nearest codebook vector so as to minimize an error function. 
A learning vector quantization neural network architecture 

with hydrophobicity input vectors is shown in Fig. 2. During 
network training process, the output value is one of the three 
states: -1(inside loop), 0(transmembrane region), +1(outside 
loop). 
 
C. Training the Neural Network 
 

We train the learning vector quantization neural network 
through following steps: 
(1) Initialization of codebook vectors. We select equal 

number of codebook vectors randomly chosen from each 
class.  

(2) Determine the nearest codebook vector. For each training 
vector, compute the Euclidean distance to each codebook 
vector,  
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Determine the codebook vector nearest the input vector,  
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(3) Learning process. In the winning processing, if an 
element has the same class (minimum distance) 
association as the training vector, modify its codebook 
vector close to the training vector, otherwise move it 
away. The other codebook vectors are left unchanged,  
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where 0 < )(tcα  < 1 is a learning rate which provides 

fast convergence. 
 We use LVQ2 [15] which features on fine tuning the 

decision borders between the compete classes. We use the 
training set to train the network and stop training when the 
network output satisfy the validation dataset. 

 
III RESULTS 

 

A. Neural Network Prediction Improves Accuracy 

Fig.1. length distributions of transmembrane segments
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Because the adaptiveness of the neural network, the 

prediction result is better than original hydrophathy plot. 
Using an amino acid sequence of Cytochrome Bc1 Complex 
from Bovine (PIR identity: CBBO) as input, both of the 
results of hydrophobicity plot and the neural network 
prediction output are shown in Fig.3. 

From the figure we can see that it is difficult to correctly 
determine the transmembrane segments from the hydropathy 
plot. Especially the 2nd and 7th peaks in the upper part of the 
figure are much lower than other hydropathy peaks. Usually 
people need to specify the low cutoff and high cutoff on the 
hydropathy plot. The output of hydrophobicity based LVQ 
neural network need not any preseting about the cut-off and 
the result is fairly good according the true transmembrane 
segments. Because the 2nd and 3rd segments are too close, the 
neural network recognize them as one segment (Fig.2. lower 
part) 

 
 
 
 
 
 
 
 
 
 
 
 
 

B. Test Data Set Evaluation 
 

       We use the test set that is totally independent to 
the training set and validation set. The result is show in Table 
1.  

The accuracy is high and comparable to that of existed 
method. This is partly due to the small number of records in 
test set. There are 6 segments have been predicted wrongly. 
Most of the segments have been successfully predicted. The 
single transmembrane helix sensitivity (M=Ncorrect/Nknown) 
reaches 94% and the single transmembrane helix 
specificity(C=Ncorrect/Npredicted) reaches 96%. The value M is 

unexpectedly low, we will discuss it in next section. Since we 
haven’t got larger test set yet, we are unable to compare the 
same large data set to the other methods.  

TABLE 1 
Prediction accuracy of different algorithm using test dataset 

Number of transmembrane helicesa 
Algorithm 

Nknown Ncorrect Npredicted 
Q(%)b 

PHDhtmc 145 142 144 96 

TMHMMd 145 140 143 95 

LVQe 145 137 143 91 
a Nknown, Npredicted, Ncorrect are, respectively, number of experimentally known 

helices, total number of predicted, and number predicted correctly. Ncorrect is 

defined as predicted helices that exhibited at least a 50% overlap with known 

transmembrane helices. 
b Prediction accuracy Q was determined as described in Tusnády and Simon 

(1998). 

predictedN
correctN

knownN
correctN

Q 100=
. 

c From the PredictProtein automatic prediction server [9] [10] using the 

default settings. 
d Hidden Markov Model [12](TMHMM) used with single sequence 

information from MPtopo. 
e Hydrophobicity based learning vector quantization using Kyte and 

Doolittle’s hydrophobicity scale, window size=19. 
        

IV. DISCUSSION 

 

Different hydrophobicity scale may lead to different 
result. We use the most widely used Kyte and Doolittle’s 
hydrophobicity scale in this paper. We have tried Engelman’s 
hydrophobicity scale, but the result is not so good as Kyte 
and Doolittle’s. Although we haven’t tried more scales, other 
scale may be a good choice. 

Compared to the existing neural network methods, 
which use multiple sequence alignment result and require 
both large memory and computational time, our LVQ neural 
network require small memory and can be trained within 
minutes. For overall topology prediction, the prediction 
results of our method is however not as good as PHDhtm.  

The neural network architecture itself doesn’t provide 
further biological meaning. In this sense, hidden markov 
model method is better than our neural network, since it 
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Fig. 3. Comparison between hydropathy plot (the upper part) and
hydrophobicity based LVQ neural network prediction output(the lower part). 



architecture follows the biological model to some extend.  
In many cases, two adjacent transmembrane segments 

are so close that the neural network can’t separate one from 
another. Consequently, there are merged transmembrane 
segments in the prediction result. These lead to decrease in 
the number of helices predicted correctly and drops in the 
overall accuracy(Q), especially in the single transmembrane 
helix sensitivity (M=Ncorrect/Nknown). Hence, the parameters of 
this neural network model presented in this paper need further 
tuning. 

 
V. CONCLUSION 

 

      In this paper we present a hydrophobicity based 
neural network prediction method, which successfully predict 
the regions of transmembrane segments in proteins. The 
overall accuracy is high and comparable to other methods. 
LVQ neural network shows its power to automatically 
determine the threshold of hydrophobicity value of 
transmembrane protein. This indicates that there is room for 
other automatic methods in determination of transmembrane 
segments in protein. 
 

ACKNOWLEDGEMENTS 

 

   We thank Prof. Stephen White for the MPtopo 
database and his helpfull discussion. 

 
REFERENCE 

 
[1] Baker, W.C., Garavelli, J.S., Huang, H.Z., McGravey, P.B., 
Orcutt, B.C., Srinivasarao, G.Y., Xiao, C.L., Yeh, L.-S.L., 
Ledley, R.S., Janda, J.F., et al, “The Protein Information 
Resource(PIR),” Nucleic Acids Res., vol.28, pp.41-44, 2000. 
[2] Bairoch, A. and Boeckmann, B., “The SWISS-PROT 
protein sequence data bank,” Nucleic Acid Res., vol. 19, 
pp.2247-2248, 1991. 
[3]  Krogh A., Larsson B., von Heijne G., Sonnhammer E.L., 
“Predicting transmembrane protein topology with a hidden 
Markov model: application to complete genomes,” J. Mol. 
Biol., Vol.305(3), pp.567-580, 2001. 
[4]Jayasinghe, S., Hristova, K., White, S.H., “Mptopo: A 
database of membrane protein topology,” Protein Sci., vol.10, 

pp.455-458, 2000. 
[5] Kyte, J., Doolittle, R.F., “A simple method for displaying 
the hydropathic character of a protein,” J. Mol. Biol., 
Vol.157(1), pp.105-132, 1982. 
[6] Engleman, D.M. Steitz, T.A. and Goldman, A. 
“Identifying nonpolar transbilayer helices in amino acid 
sequences of membrane proteins,” Annu. Rev. Biophys. 
Chem., vol.15, pp.321-353, 1986. 
[7] von Heijine, G., “The distribution of positively charged 
residues in bacterial inner membrane proteins correlates with 
the transmembrane topology,” EMBO J., vol.5(11), 
pp.3021-3027, 1986. 
[8] Jones, D.T., Taylor, W.R. and Thorton, J.M.,”A model 
recognition approach to the prediction of all helical 
membrane protein structure and topology,” Biochem., vol.33, 
pp.3038-3049, 1994. 
[9] Rost, B., Casadio, R., Fariselli, P. and Sander, C., 
“Transmembrane helices predicted at 95% accuracy,” Protein 
Sci., vol.4(3), pp.521-533, 1995. 
[10] Rost, B., Fariselli, P. and Casadio, R., “Topology 
prediction for helical transmembrane proteins at 86% 
accuracy,” Protein Sci., vol.5(8), pp.1704-1718, 1996. 
[11] Tusnady, G.E., Simon I., “Principles governing amino 
acid composition of integral membrane proteins: application 
to topology prediction,” J. Mol. Biol., vol.283(2), pp.489-506, 
1998. 
[12]Sonnhammer, E.L., von Heijne, G., Krogh, A.A. “Hidden 
Markov model for predicting transmembrane helices in 
protein sequences,” Proc. 6th Int. Conf. Intell. Syst. Mol. Biol., 
pp.175-182, 1998. 
[13]Senes, A., Gerstein, M., and Engelman, D.M., “Statistical 
analysis of amino acid patterns in transmembrane helices: 
The GxxxG motif occurs frequently and in association with 
β-branched residues at neighboring positions,” J. Mol. Biol., 
vol. 296, pp.921–936, 2000. 
[14]Kohonen, T., “The self-organizing map'', Proceedings of 
the IEEE, vol.78(9), pp.1464-1480, 1990. 
[15] Kohonen, T., Hynninen, J., Kangas, J., Laakosonen, J. , 
and Torkkola, K., “LVQ_PAK: The learning vector 
quantization program package” Helsinki University of 
Technology, Laboratory of Computer and Information 
Science Technical Report A30, 1996. 


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


